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ABSTRACT

We consider the problems of extracting local fiber orientation and
tracing tubular structures in 2-D medical images. We first present
a nonlinear filter for detecting overlaid orientations at each pixel.
The filter is used to build two profiles, the directional profile and the
appearance profile, which are designed to give high responses along
an oriented structure. The local orientation at a pixel is then obtained
from the local maxima of the product of these two profiles. We also
develop an algorithm for tracing tubular structures. Starting from a
user-specified seed point on the fiber, we find the next point on the
fiber by locating the maxima of the tracing profile, which favors the
smoothness of the curve as well as its alignment with the estimated
orientation. We evaluate the proposed method on different medical
structures such as cardiac myofibers, vessels, and microtubules.

Index Terms— Nonlinear filtering, local orientation analysis,
tracing of tubular structures.

1. INTRODUCTION

Extracting local orientation and tracing tubular structures in medical
images are important quantitative tools for developing precise physi-
ological models of organs. For instance, the configuration of the my-
ocardial fibers is crucial for modeling the electromechanical proper-
ties of the heart and understanding structural changes with myocar-
dial infarction [1]. Likewise, the mechanical properties of cells are
related to the spatial orientation of the cytoskeletal filaments. More-
over, the detection and enhancement of human vasculature can sig-
nificantly improve the visualization of interventional procedures [2].

The problems of extracting local fiber orientation and tracing
fibers in medical images are closely related to a primal problem in
image processing: edge detection. This has motivated several efforts
in the image processing and computer vision communities to intro-
duce fast and robust edge detection algorithms. Most of the existing
methods are based on i) the image gradient [3], ii) the image Hes-
sian [2, 4], or iii) the structure tensor [5, 6]. In particular, Karlon et
al. present a geometric algorithm based on the gradient image to ex-
tract the alignment of cytoskeletal filaments [3]. Different functions
of the eigenvalues of the image Hessian are examined for vascular
enhancement [2], and detection of different tubular structures [4].
Also, [7] proposes a path seeking strategy that uses both the image
Hessian and image gradient to trace microtubules.

Despite the success of Hessian-based solutions in detecting
tubular structures, such methods suffer from sensitivity to noise
and scale, as well as non-robustness to bifurcations and crossings.
Nonlinear filters can be designed to overcome these problems. For
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instance, in [8], multiscale elongated filters are presented for fiber
detection and enhancement, whereas [9] uses the characteristics of
the local intensity profile for detecting vessels.

In this paper, we propose a robust nonlinear filter that avoids the
computation of image derivatives. We extract overlaid orientations
at a pixel from the values of two different profiles. The first profile,
called the directional profile, is built by comparing the intensity vari-
ations along the oriented structure to those across the structure. The
second profile, called the appearance profile, is formed by examin-
ing the intensity coherence along the structure. The product of these
profiles gives the probability of having an oriented structure along a
given direction at each pixel. We also develop a method initiated at
user-specified seeds for tracing fibers through branching points. In
particular, given a point on the structure of interest, the algorithm lo-
cates the next point by finding the mode of the tracing profile, which
favors the smoothness of the structure as well as its alignment with
the aforementioned profiles. We localize the modes of the profiles,
i.e., orientations to be followed, using Gaussian mixture models.

This paper is organized as follows: §2 shows the construction of
the nonlinear filters; §3 presents the computation of the filter profiles;
§4 describes the extraction of the local orientation along with the
tracing algorithm; and §5 shows the experimental results. §6 presents
the conclusions as well as directions for future research.

2. CONSTRUCTION OF THE NONLINEAR FILTERS

The proposed nonlinear filter is inspired from the design introduced
in [10], which we will refer to as the rigid filter. This filter computes
a nonlinear function of the image intensities on a neighborhood of
a point of interest, which is designed to give a high response when
the filter is aligned with the oriented structure. More specifically, the
filter is centered at the point of interest x = (x1, x2), and is oriented
at an angle θ ∈ (−π/2, π/2] with respect to the x-axis, as depicted
in Fig. 1(a). The support is defined in terms of the width w and
the radius r of the filter, and these parameters dictate the placement
of the points {b, b1, b2} and {f , f 1, f 2}, which form the backward
and the forward parts, respectively. Note that {b1, b2} and {f 1, f 2}
form antipodal pairs with respect to b and f , respectively. The filter
is designed to give a high response when the variation of intensity
between f and b is small compared to the variations of intensity in
the perpendicular direction. The filter is quite effective in detecting
road-like structures, as shown in [10].

Unfortunately, the filter depicted in Fig. 1(a) can have difficulties
in detecting multiple orientations at a branching point, because the
portion bf is rigid. For instance, the portion bf will not be perfectly
aligned with the branches at a Y-junction. This is a common occur-
rence in medical images. We thus modify the filter to give a high
response at more than one orientation. The pivoting filter, shown in

260978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



Fig. 1(b), is a variant of the rigid filter such that its backward por-
tion {b1b2, bx} is fixed, whereas its forward portion {f 1f 2, xf}
is allowed to pivot with respect to x. The relative orientation at x
is defined as the angle between the forward and the backward part,
i.e., θ := �(bx, xf ) ∈ (−π/2, π/2]. As we shall see, this filter is
particularly useful for tracing fibers through branchings.

x x-axis

y-axis
wr

b

b1

b2

f

f1

f2
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(b) The proposed pivoting filter

Fig. 1. Geometry of the nonlinear filters with key parameters

3. PROFILES FOR ORIENTATION ANALYSIS

3.1. Nonlinear Filter Response and Directional Profile

We shall now present the nonlinear response of the pivoting filter.
Let Υ ⊂ R

2 denote the image domain. Consider a grayscale image
I : Υ → R, and denote the intensity value at a point x ∈ Υ by
I(x). Also, let Θ ⊂ R be the set of filter orientations. The response
of the pivoting filter at point x along a direction θ ∈ Θ is defined as1

hx(θ)=

{
1 if |I(f )−I(b)|≤min

i=1,2
{|I(bi)−I(b)|,|I(f i)−I(f )|}

0 otherwise.
(1)

The response of the filter in (1) can be interpreted as a voting
scheme. At each pixel x, the filter detects a linear structure oriented
along θ ∈ Θ if the absolute value of the intensity variation along
the structure is less than the minimum absolute intensity variation
orthogonal to the structure. However, notice that the response of the
filter is 1 only when the portions bx and xf are almost perfectly
aligned with the underlying structure of interest. A small variation
of orientation will cause the filter to immediately give a 0 response.

To overcome this problem, we compute the filter response hx(θ)
at several pixels in a neighborhood of x and at several orientations
θ. We then aggregate and normalize these responses in order to ob-
tain a probability distribution of the local orientation at each pixel
x. More specifically, let Nx denote a neighborhood of x of size
ωd × ωd. The average response of the filter on Nx is given by
h̄x(θ) =

∑
x̃k∈Nx

hx̃k (θ)/|Nx |, where |Nx | is the cardinality of
Nx . We then evaluate the average filter response on a finite set of
orientations Θ = {θu}, where u represents the discretization index.
The directional profile, denoted by PD;x(θ), is the probability of
detecting an oriented structure at point x along direction θ, i.e.,

PD;x(θ) =
h̄x(θ)∑
u h̄x(θu)

. (2)

1In practice, the image is defined at discrete coordinates, i.e., Υ ⊂ Z
2, but

the points {b, bi, f, fi} may be points in R
2 for a particular orientation θ.

In such cases, we compute I(x) by bilinear interpolation on a neighborhood
of x, Ωx , i.e., I(x) =

∑
x̄k∈Ωx

akI(x̄k), where x̄k ∈ Z
2 and ak are the

weights of the points {x̄k} such that
∑

k ak = 1.

3.2. Intensity Coherence and Appearance Profile

An alternative way of estimating local orientation in an image is to
find image directions along which the intensity variation is small.
This can be done by building a profile that measures the intensity
coherence along a particular direction. In [9], Qian et al. defined a
polar profile measure that reflects the probability of having a ves-
sel at an individual point. Here, we employ a similar measure that
captures the intensity coherence along xf .

We note that the sum of the absolute intensity difference remains
low if i) the pivoting portion xf aligns with the true fiber, and ii) the
points for which the difference is computed are selected from the
pivoting portion. Hence, we define the intensity coherence as

gx(θ) =
1

|Nx |
∑

x̃∈Nx

∫ 1

0

|I(x̃ + λ(f̃ − x̃))− I(x̃)|2dλ, (3)

where f̃ is the forward filter point calculated with respect to each
x̃ ∈ Nx . Note that gx(θ) is minimized when the search direction θ
aligns with the true fiber orientation.

We can use the intensity coherence to define the probability of
having a small appearance variation at x along θ. For this purpose,
we define the appearance profile, denoted by PA;x(θ), as

PA;x(θ) = Z exp(−gx(θ)), (4)

where Z is a normalization constant. Notice that PA;x is maximized
when θ aligns with the true fiber orientation. Therefore, we can use it
in combination with the directional profile for orientation estimation
and fiber tracing, as we will show now.

4. PROFILE-BASED ORIENTATION EXTRACTION AND
FIBER TRACING

Recall that the rigid filter (Fig. 1(a)) performs well when the lo-
cal structure is composed of only one dominant orientation or with
linearly crossing structures, e.g., X-junctions. The pivoting filter
(Fig. 1(b)), on the other hand, requires prior localization of the fixed
backward portion {b1b2, bx}, and scans the region with its pivoting
forward portion. Therefore, the pivoting filter is more suitable for de-
tecting orientations at a branching point, hence for tracing oriented
structures. We thus utilize the rigid filter for orientation extraction
and the pivoting filter for fiber tracing, as described next.

4.1. Orientation Extraction

Extraction of local orientation is usually performed by analyzing the
distribution of fibers at some user-specified points. The directional
profilePD;x(θ) and the appearance profilePA;x(θ) reflect the prob-
ability of having a locally linear structure at x in the direction θ. We
utilize the rigid filter to build the aforementioned profiles, and obtain
the orientation profile PO;x(θ) at x along θ as

PO;x(θ) = PD;x(θ) · PA;x(θ). (5)

The modes, i.e., local maxima, of the orientation profile PO;x give
the candidate orientations at x. We will describe how to find such
local maxima in §4.3.

4.2. Fiber Tracing

Given two user-specified points x1 and x2, our tracing algorithm
successively locates points {x1, x2, x3, . . .} on the fiber and repre-
sents the resulting structure as the ordered set of those points. The
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tracing algorithm proceeds as follows. At each step i, we assume
we are given points xi−1 and xi, and wish to find point xi+1. For
this purpose, we build a pivoting filter, such as the one shown in Fig.
1(b), with b = xi−1, x = xi and f = xi+1. We want the point
xi+1 to maximize the orientation profile, but at the same time give
rise to a smooth curve. For this purpose, we define a smoothness
term γ as the cosine of the angle between the segments bx and xf ,
i.e.,

γxi(θ) = cos(θ). (6)

We then choose xi+1 as the point along the direction θ that maxi-
mizes the tracing profile at xi, PT ;xi(θ), which is defined as

PT ;xi(θ) = PD;xi(θ) · PA;xi(θ) · γxi(θ). (7)

The tracing profile favors both the local smoothness of the re-
sulting structure as well as alignment with the directional profile PD

and the appearance profile PA at point xi along θ. The modes of the
tracing profilePT give the candidate orientations at xi to be tracked.

4.3. Mode Detection

To detect automatically the modes of the orientation profile (Eq. 5)
and of the tracing profile (Eq. 7), we employ a Gaussian mixture
model (GMM). The number of Gaussian components C corresponds
to the maximum number of branches a fiber can divide into at a
point. Thus, locating the underlying orientations at the seed point x
is equivalent to computing the parameters {{μc}, {σc}} of the mix-
ture model, which can be done using the expectation-maximization
(EM) algorithm. In particular, the means of the Gaussian distribu-
tions {μc} are the candidate orientations. Notice that a GMM may
overestimate the number of branches in the structure, thus an inter-
mediate step that finds the true number of orientations is required. A
simple solution is to merge any two components if the angle between
their means is smaller than a user-specified threshold δ.

The means of the Gaussian distributions, after angular threshold-
ing, represent the estimated directions at point xi. When tracing the
fibers beyond xi, the next point along the c-th branch is computed
as xc

i+1 = xi + t · μc, where t is a user-specified step size. This
calculation is repeated for each cluster center {μc} to track every
branch starting at xi. Fig. 2 illustrates the operation of the pivoting
filter at two points and shows the GMM-based extraction of local
orientations on a synthetic image.

PT ( )

PT ( )

Fig. 2. Extraction of local orientation using the pivoting filter and
mode detection using GMM at two analysis points {x} (in blue)
with corresponding backward points {b} (in red)

5. EXPERIMENTS

5.1. Illustrative Examples

We begin by evaluating the performance of our nonlinear filter in
two different types of medical data. We first extract the local orien-
tation on microtubules assembled in vitro (Fig. 3(a)) using the rigid
filter. The filter parameters are set to {r, w, wd} = {6, 4, 5}. It is
assumed that there is only one dominant orientation at each analysis

point. Hence a representative vector along θ̂ = argmaxu PO(θu) is
placed to visualize the extracted orientations, which are also shown
in Fig. 3(a). We observe that the pivoting filter successfully cap-
tures the local orientations because i) the width of all the oriented
structures are approximately equal, and ii) the width w of the filter is
selected such that the antipodal pairs encapsulate the fibers. We will
discuss the importance of the filter geometry in §5.4.

We then trace a simple bifurcating vessel (Fig. 3(b)) using
the pivoting filter. In this case, the filter parameters are set to
{r, w, wd, t} = {4, 4, 3, 2}, whereas the number of Gaussian com-
ponents C is equal to 2, and the angular separation threshold δ
between the means of the components is π/3. Fig. 3(b) also shows
the result of the tracing algorithm. It is observed that the pivoting
filter is able to locate the bifurcation and accurately trace the vessel.

(a) Microtubules in [11] (b) Bifurcating vessel

Fig. 3. Illustrative examples showing the performance of the filters

5.2. Tracing Microtubules

We also evaluate the performance of our tracing algorithm in micro-
scopic microtubule images taken from [12]. The parameters of the
pivoting filter are set to {r, w, wd, t} = {4, 3, 3, 2}. Fig. 4 illus-
trates selected microtubules superimposed with their corresponding
tracing results. Notice that each microtubule is independently traced
and different colors are used to differentiate between crossing struc-
tures. Since the microtubules do not have any bifurcation, we set
C = 1 and compute the mean of the tracing profile at a point xi on a
structure to find the next point xi+1. We observe that the algorithm
yields visually correct results.

Fig. 4. Tracing of microtubules (image in [12])
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5.3. Orientation Extraction on Cardiac Myofibers

The rigid filter is used to extract myofiber orientation in cardiac his-
tology images. Figs. 5(a)-5(c) show two images with the regions of
interest (ROIs) marked in blue. Fig. 5(b)-5(d) depict the extracted
orientation vectors in red and the average orientation vector in blue.
The filter parameters are set to {r, w, wd} = {3, 4, 5}. We see that
at most of the analysis points, the extracted local orientation matches
that of the image fibers, and hence the average orientation vectors are
visually correct. The errors are due to the small distance between in-
dividual image fibers.

(a) Histology image 1 with the ROI (b) Extracted orientations

(c) Histology image 2 with the ROI (d) Extracted orientations

Fig. 5. Fiber orientations in cardiac histology images

We repeat the same experiment on images of the left and right
ventricles of a guinea pig heart. Our results are illustrated in Fig. 6.
In Fig. 6(a), the width of the myofibers and their relative position
prevent us from finding an optimal size for the filter. In particular, a
filter of width w = 10 only captures local orientations of myofibers
of smaller width, but still enables us to compute the visually correct
average orientation shown in blue. In Fig. 6(b), the presence of high
textured areas causes erroneous orientations at some analysis points,
but the average orientation vector shows the correct orientation.

(a) Left ventricular myofibers (b) Right ventricular myofibers

Fig. 6. Orientation extraction on myofibers of a guinea pig heart

5.4. Discussions on Parameter Selection

Our experiments show that the size of the filter determines the type
of structures that can correctly be detected in an image. For instance,

the distance between the antipodes, 2w, should be larger than the
width of the structure. However, the presence of nearby structures
limits the value of w. Hence the minimum value of w that allows
the antipodal pairs to encapsulate the fiber is the optimal value. On
the other hand, the value of r becomes specially critical if the local
curvature of the true fiber abruptly changes. A good strategy is to
increase or decrease the value of r depending on the local curvature.
The tracing step size t plays a similar role to the radius r, hence it
can be adjusted as a function of the local curvature.

6. CONCLUSIONS AND FUTURE WORK

We have presented a nonlinear filtering technique to extract local
spatial orientation and trace tubular structures in 2-D medical im-
ages. The rigid nonlinear filter detects the correct orientation at a
point of interest, and provides the user with directional and appear-
ance profiles, which mutually reflect the probability of observing an
oriented structure as a function of direction. Likewise, our pivoting
filter builds the profiles and adds a smoothness term to locate the
most likely orientations to trace fibers through crossings and bifur-
cations. In the experiments, we obtain visually correct and promis-
ing results. Our future work includes extending the approach to 3-D
data, reducing the number of parameters that need to be tuned as well
as extending the proposed framework with diffusion tensor data.
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